
Please join the #cicd channel

in the EESSI Slack for questions and discussion

Step 1) Join the EESSI Slack,

 see “Slack channel” link at https://eessi.io

Step 2) Join #cicd in EESSI Slack

 (direct link: https://eessi-hpc.slack.com/archives/C096B9JSD0C)

1

EESSI CI/CD Hackathon 2025

Today’s session will start at 09:10 CEST !

Q&A via EESSI Slack

https://eessi.io/docs/training-events/2025/hackathon-eurohpc-user-days

https://eessi.io
https://eessi-hpc.slack.com/archives/C096B9JSD0C
https://www.eessi.io/docs/training-events/2025/hackathon-eurohpc-user-days/

● Small Rocky Linux 9 cluster (in the cloud), for those who cannot install EESSI

● You need to create an account!
○ Signup: https://mokey.tutorial.eessi.science/auth/signup
○ Accounts will only be approved for access on the day of the tutorial,

so please record your username/password !
■ “Reset password” link does not work

● Access via SSH or web browser (pick one and stick to it!)
○ Shell access: ssh you@tutorial.eessi.science

■ Use login node for hands-on, it has 16 cores so should be fine to share
○ Via browser: https://tutorial.eessi.science

■ Make sure to change default “Time” to 4 hours
○ Take 4-8 cores

● System will be up until the end of the hackathon

Prepared environment

2

Today’s session
will start at
09:10 CEST !

https://mokey.tutorial.eessi.science/auth/signup
https://tutorial.eessi.science

2 October 2025, Copenhagen
https://eessi.io/docs/training-events/2025/hackathon-eurohpc-user-days

EESSI CI/CD hackathon

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European High Performance Computing
Joint Undertaking (JU) and countries participating in the project. Neither the European Union nor the granting authority can be held responsible for them.

https://eessi.io/docs/training-events/2025/hackathon-eurohpc-user-days

● You have watched the episodes from the webinar series:
○ Introduction to EESSI
○ Introduction to EasyBuild

● You have built a software package in some way (e.g., compiled)
○ Nice to have: heard of (and maybe used) CMake/Autotools

● You are somewhat familiar with Git
○ Nice to have: familiar with GitHub/GitLab

● Familiar with environment modules (Lmod)

Helpful knowledge for this event

4

https://www.eessi.io/docs/training/2025/webinar-series-2025Q2/#introduction-to-eessi
https://www.eessi.io/docs/training/2025/webinar-series-2025Q2/#introduction-to-easybuild
https://carpentries-incubator.github.io/hpc-intro/15-modules/index.html

[09:15-09:45] Round table: introduce yourself [everyone]

[09:45-10:15] Quick introduction to EESSI + EasyBuild [Helena + Lara]

[10:15-10:45] EESSI for Continuous Integration (CI) [Alan]

[10:45-11:00] (coffee break)

[11:00-11:30] EESSI for Continuous Integration (CI) - continued [Alan]

[11:30-12:00] EESSI for Continuous Deployment (CD) [Alan]

[12:00-12:30] (lunch break)

[12:30-12:45] Kickstart hands-on [Kenneth]

[12:30-16:00] Hands-on: pick your own adventure! [everyone]

[16:00-16:30] Show & tell (optional) [everyone]

[16:30-17:00] Q&A + end

Agenda

5

Round table

Please introduce yourself, in 1 minute (or less)…

● Who are you? (name + affiliation)

● Where do you work, what are your tasks?

● Why are you here?

What are you hoping to get out of this event?

6

● Example: GROMACS 2020.1

(PRACE benchmark, Test Case B)

● Test system: dual-socket

Intel Xeon Gold 6420

(Cascade Lake, 2x18 cores)

● Barplot shows performance of

different GROMACS binaries,

on exact same hardware/OS

Keeping the P in HPC

● Software should be optimized for the system it will be run on

● Impact on performance is often significant for scientific software!

7

SSE2 AVX AVX2 AVX512

80% speedup!

Type of GROMACS binary

P
er

fo
rm

an
ce

 (s
im

ul
at

ed
 n

s/
da

y)
 -

 h
ig

he
r i

s
be

tt
er

● Explosion of available scientific software (bioinformatics, AI boom, …)

● Increasing interest in cloud for scientific computing (flexibility!)

● Increasing variety in processor (micro)architectures beyond Intel & AMD:

Arm is coming already here (see Fugaku, JUPITER, …), RISC-V is coming (soon?)

● In strong contrast: available (wo)manpower in HPC support teams is (still) too limited…

Scientific computing is changing

8

What if you no longer have to install

a broad range of scientific software

from scratch on every laptop, HPC cluster,

or cloud instance you use or maintain,

without compromising on performance?

9

EESSI in a nutshell
● European Environment for Scientific Software Installations (EESSI)

● Shared repository of (optimized!) scientific software installations

● Avoid duplicate work across (HPC) sites by collaborating on a shared software stack

● Uniform way of providing software to users, regardless of the system they use!

● Should work on any Linux OS and system architecture

● From laptops and personal workstations to HPC clusters and cloud

● Support for different CPUs, interconnects, GPUs, etc.

● Focus on performance, automation, testing, collaboration

https://eessi.io - https://eessi.io/docs
10

https://eessi.io
https://eessi.io/docs

● Providing a truly uniform software stack

○ Use the (exact) same software environment everywhere

○ Without sacrificing performance for “mobility of compute”
(like is typically done with containers/conda)

● Avoid duplicate work (for researchers, HPC support teams, sysadmins, …)

○ Tools that automate software installation process
(EasyBuild, Spack) are not sufficient anymore

○ Go beyond sharing build recipes => work towards a shared software stack

● Facilitate HPC training, development of (scientific) software, …

Major goals of EESSI

11

High-level overview of EESSI

12

Host operating system

 T

es
tin

g

Software layer
Optimized applications + dependencies

Filesystem layer
Distribution of the software stack

Compatibility layer
Levelling the ground across client OSs

Host OS
provides
network
& GPU
drivers,

resource
manager
(Slurm),

...

EESSI ingredients

13

Filesystem Layer

Global distribution of
software installations

via CernVM-FS

Optimized software
installations for specific
CPU microarchitectures

Intuitive user interface:
module avail,
module load, …

Automatic selection of
best suited part of
software stack for

CPU microarchitectures

Compatibility layer

Abstraction from the
host operating system

Caspar

Software Layer

● Software installations included in EESSI are:

○ Automatically “streamed in” on demand (via CernVM-FS)

○ Built to be independent of the host operating system

“Containers without the containing”

○ Optimized for specific CPU generations + specific GPU

types

● Initialization script auto-detects CPU + GPU of the system

How does EESSI work?

14

EESSI as a shared software stack

15

Currently > 1,000 software installations available per supported CPU target
via software.eessi.io CernVM-FS repository; increasing every week

● 13 (+1) supported CPU targets (x86_64 + Arm),
see https://eessi.io/docs/software_layer/cpu_targets

● Over 500 different software packages,
excl. extensions: Python packages, R libraries

● Over 15,000 software installations in total

● Including ESPResSo, GROMACS, LAMMPS,
OpenFOAM, PyTorch, R, QuantumESPRESSO,
TensorFlow, waLBerla, WRF, …

● eessi.io/docs/available_software/overview

● foss/2023a + foss/2023b in EESSI 2023.06,
foss/2024a + foss/2025a in EESSI 2025.06

Overview of available software in EESSI

16

https://eessi.io/docs/software_layer/cpu_targets
http://eessi.io/docs/available_software/overview

 # Native installation
Installation commands for RHEL-based distros

like CentOS, Rocky Linux, Almalinux, Fedora, …

install CernVM-FS

sudo yum install -y

https://ecsft.cern.ch/dist/cvmfs/cvmfs-release/cvmfs-release-latest.noarch.rpm

sudo yum install -y cvmfs

create client configuration file for CernVM-FS

(no proxy, 10GB local CernVM-FS client cache))

sudo bash -c "echo 'CVMFS_CLIENT_PROFILE="single"' > /etc/cvmfs/default.local"

sudo bash -c "echo 'CVMFS_QUOTA_LIMIT=10000' >> /etc/cvmfs/default.local"

Make sure that EESSI CernVM-FS repository is accessible

sudo cvmfs_config setup

Alternative ways of accessing EESSI are available, via a container image, via cvmfsexec, …

eessi.io/docs/getting_access/native_installation - eessi.io/docs/getting_access/eessi_container

Getting access to EESSI via CernVM-FS

17

http://eessi.io/docs/getting_access/native_installation
http://eessi.io/docs/getting_access/eessi_container

The EESSI User Experience

18

Local client cache Mirror server

$ source /cvmfs/software.eessi.io/versions/2023.06/init/bash

{EESSI 2023.06} $ module load GROMACS/2024.1-foss-2023b

{EESSI 2023.06} $ gmx mdrun ...

Central server

EESSI provides on-demand streaming

of (scientific) software (like music, TV-series, …)
Kenneth

Using EESSI (demo)

19

eessi.io/docs/using_eessi/eessi_demos

/cvmfs/software.eessi.io/versions/2023.06/software

`-- linux

 |-- aarch64

 | |-- a64fx

 | |-- generic

 | |-- neoverse_n1

 | |-- neoverse_v1

 | `-- nvidia/grace

 `-- x86_64

 |-- amd

 | |-- zen2

 | |-- zen3

 | `-- zen4

 |-- generic

 `-- intel

 |-- cascadelake

 |-- haswell

 |-- icelake

 |-- haswell

 `-- sapphirerapids

 |-- modules

 `-- software

$ source /cvmfs/software.eessi.io/versions/2023.06/init/bash

Found EESSI pilot repo @

/cvmfs/software.eessi.io/versions/2023.06!

archdetect says x86_64/amd/zen3

Using x86_64/amd/zen3 as software subdirectory

...

Environment set up to use EESSI pilot software stack, have fun!

{EESSI 2023.06} $ module load R/4.3.2-gfbf-2023a

{EESSI 2023.06} $ which R

/cvmfs/software.eessi.io/versions/2023.06/software/linux/x86_64/

amd/zen3/software/R/4.3.2-gfbf-2023a/bin/R

{EESSI 2023.06} $ R --version

R version 4.3.2

Automatically detects CPU microarchitecture

https://www.eessi.io/docs/using_eessi/eessi_demos

5 Mondays in a row May-June 2025
https://eessi.io/docs/training/2025/webinar-series-2025Q2

● Introduction to EESSI

● Introduction to CernVM-FS

● Introduction to EasyBuild

● EESSI for CI/CD

● Using EESSI as the base for a system stack

Slides + recordings available

Webinar series: Different aspects of EESSI

20

https://eessi.io/docs/training/2025/webinar-series-2025Q2

● EasyBuild is a software build and installation framework

● Strong focus on scientific software, performance, and HPC systems

● Open source (GPLv2), implemented in Python

● Brief history:

○ Created in-house at HPC-UGent in 2008

○ First released publicly in Apr’12 (version 0.5)

○ EasyBuild 1.0.0 released in Nov’12 (during SC12)

○ Worldwide community has grown around it since then!
(>1,000 members on EasyBuild Slack)

https://easybuild.io

https://docs.easybuild.io

https://blog.easybuild.io

https://github.com/easybuilders

https://easybuild.io/join-slack

What is EasyBuild?

21

https://easybuild.io
https://docs.easybuild.io
https://blog.easybuild.io
https://github.com/easybuilders
https://easybuild.io/join-slack

● Tool to provide a consistent and well performing scientific software stack

● Uniform interface for installing scientific software on HPC systems

● Saves time by automating tedious, boring and repetitive tasks

● Can empower scientific researchers to self-manage their software stack

● A platform for collaboration among HPC sites worldwide

● Has become an “expert system” for installing scientific software

EasyBuild in a nutshell

22

● EasyBuild framework defines step-wise installation procedure, leaves some steps unimplemented

● Easyblock completes the implementation, override or extends installation steps where needed

● Easyconfig file provides the details (software version, dependencies, toolchain, …)

Step-wise installation procedure

23

The EasyBuild framework (API) leverages easyblocks (Python scripts) to automatically
build and install (scientific) software, potentially including additional extensions (Python
pkgs, …), using a particular compiler toolchain (incl. MPI/BLAS/LAPACK/FFT libraries),

as specified in easyconfig files (“recipes”) which define a set of easyconfig parameters.

EasyBuild ensures that the specified (build) dependencies are in place, and automatically
generates a set of (environment) modules that facilitate access to the installed software.

An easystack file can be used to specify a collection of software to install with EasyBuild.

EasyBuild terminology

24

● There are 3 different configuration levels in EasyBuild:

○ Configuration files (see eb --show-default-configfiles)

○ Environment variables ($EASYBUILD_XYZ)

○ Command line options to the eb command

● Each configuration setting can be specified via each “level” (no exceptions!)

● Hierarchical configuration:

○ Configuration files override default settings

○ Environment variables override configuration files

○ eb command line options override environment variables

Configuring EasyBuild

25

Inspecting the current configuration

● It can be difficult to remember how EasyBuild was configured

● Output produced by eb --show-config is very useful to remind you

● Shows configuration settings that are different from default

● Always shows a couple of key configuration settings

● Also shows on which level each configuration setting was specified

● Full current configuration: eb --show-full-config

26

● Use eb command to run EasyBuild

● Software to install is usually specified via name(s) of easyconfig file(s), or easystack file

● --robot (-r) option is required to also install missing dependencies (and toolchain)

● Typical workflow:

○ Find or create easyconfig files to install desired software

○ Inspect easyconfigs, check missing dependencies + planned installation procedure

○ Double check current EasyBuild configuration

○ Instruct EasyBuild to install software (while you enjoy a coffee… or two)

Basic usage of EasyBuild

27

Searching, copying, installing easyconfigs

● To search for easyconfig files to install (case-insensitive), use eb --search (or -S)
$ eb --search bcftools

== found valid index for /home/ec2-user/eb-env/easybuild/easyconfigs, so using it...

 ...

 * /home/example/eb-env/easybuild/easyconfigs/b/BCFtools/BCFtools-1.18-GCC-12.3.0.eb

 * /home/example/eb-env/easybuild/easyconfigs/b/BCFtools/BCFtools-1.19-GCC-13.2.0.eb

 * /home/example/eb-env/easybuild/easyconfigs/b/BCFtools/BCFtools-1.21-GCC-13.3.0.eb

● To copy an easyconfig file, use eb --copy-ec

$ eb --copy-ec BCFtools-1.18-GCC-12.3.0.eb /tmp

● To install an easyconfig file, pass it to eb (and maybe also use --robot)
$ eb BCFtools-1.18-GCC-12.3.0.eb --robot

28

To check which dependencies are still missing, use eb --missing (or eb -M):

● Takes into account available modules, only shows what is still missing

$ eb BCFtools-1.18-GCC-12.3.0.eb --missing

1 out of 23 required modules missing:

* BCFtools/1.18-GCC-12.3.0 (BCFtools-1.18-GCC-12.3.0.eb)

Checking missing dependencies via eb --missing

29

To use the software you installed with EasyBuild, load the corresponding module:

inform modules tool about modules installed with EasyBuild

module use $EASYBUILD_INSTALLPATH/modules/all

check for available modules for BCFtools

module avail BCFtools

load BCFtools module to “activate” the installation

module load BCFtools/1.18-GCC-12.3.0

30

Using software installed with EasyBuild

EasyBuild 5.x produces clearer error messages when a shell command failed:

31

Improved error reporting in EasyBuild v5.x

● Colors to draw attention to the most important parts of the error message

● File with (only) command output + path to build directory are easy to find

● Auto-generated cmd.sh script starts interactive subshell in correct build environment!

ERROR: Shell command failed!

full command -> make -j 8 LDFLAGS='-lfast'

exit code -> 2

called from -> 'build_step' function in /.../easyblocks/generic/configuremake.py (line 357)

working directory -> /tmp/ec2-user/kenneth/easybuild/build/BCFtools/1.18/GCC-12.3.0/bcftools-1.18

output (stdout + stderr) -> /tmp/eb-i61vle8x/run-shell-cmd-output/make-1ynysa6f/out.txt

interactive shell script -> /tmp/eb-i61vle8x/run-shell-cmd-output/make-1ynysa6f/cmd.sh

https://docs.easybuild.io/interactive-debugging-failing-shell-commands

https://docs.easybuild.io/interactive-debugging-failing-shell-commands

● Every installation performed by EasyBuild requires an easyconfig file

● Easyconfig files can be:

○ Included with EasyBuild itself (or obtained elsewhere)

○ Derived from an existing easyconfig (manually or automatic)

○ Created from scratch

● Most easyconfigs leverage a generic easyblock

● Sometimes using a custom software-specific easyblock makes sense…

32

Adding support for additional software

● Step-wise example + exercise of creating an easyconfig file from scratch

● For fictitious software packages: eb-tutorial + py-eb-tutorial

● Sources available at
https://github.com/easybuilders/easybuild-tutorial/tree/main/docs/files

● Great exercise to work through these yourself!
name = 'eb-tutorial'

version = '1.0.1'

homepage = 'https://easybuilders.github.io/easybuild-tutorial'

description = "EasyBuild tutorial example"

33

Exercise on creating easyconfig file from scratch

https://tutorial.easybuild.io

https://github.com/easybuilders/easybuild-tutorial/tree/main/docs/files
https://tutorial.easybuild.io

34

The EasyBuild community

 Documentation is read all over the world

 HPC sites, consortia, and companies

 Slack: >1000 members,

~180 active members per week

 Bi-weekly online conf calls + yearly user meeting

EasyBuild User Meeting 2025 (Jülich, Germany)

● Introducing Continuous Integration (CI)

● Navigating EESSI to build my project

● Building my project with the EESSI GitHub Action

● Navigating EasyBuild to build with EESSI-extend

● Building with EESSI-extend and the EESSI GitHub Action

● Building my project with the EESSI GitLab Component

● Continuous Deployment and what EESSI can offer there

EESSI for CI/CD

35

● Development practice of frequently merging code

into a shared repository

● Automated build and test run on each code change

● Helps detect bugs early and improve code quality

● Provides immediate feedback to developers

● Ensures the application is always in a deployable state

What is Continuous Integration (CI)?

36

● ✅ Version Control System (e.g., Git)

● 🔄 Automated Build System

● 🧪 Automated Testing Suite

● 📢 Notification/Feedback Mechanism

Key Components of CI

37

● 🔍 Early detection of integration issues

● 🚀 Faster and safer release cycles

● 🔧 Encourages small, incremental changes

● 🧼 Improved code quality and team collaboration

● 🔁 Easier refactoring and code maintenance

Benefits of Continuous Integration

38

● Need HPC-suitable toolchains and dependencies

● Need a way to deal with MPI

● Typically want to test defined architectures

● Want to have accelerator support

● Performance and scalability (also) matter

Specific Challenges of CI in HPC context

39

● EESSI can be used in CI environments like:
○ GitHub: github.com/marketplace/actions/eessi
○ GitLab: gitlab.com/explore/catalog/eessi/gitlab-eessi

● EESSI can provide:
○ Different compilers to test your software with
○ Required dependencies for your software
○ Additional tools like ReFrame, performance analysis tools, …

● Other than CernVM-FS to get access to EESSI, no installations required!
○ Everything is pulled in on-demand by CernVM-FS

● Significantly facilitates also running CI tests in other contexts

Leveraging EESSI in CI environments

Alan 40

http://github.com/marketplace/actions/eessi
http://gitlab.com/explore/catalog/eessi/gitlab-eessi

● Load the necessary modules that you need for compilation

○ Compiler, MPI, libraries, dependencies,...

○ Best to try to keep dependencies in the same toolchain

● Load a buildenv module for your toolchain

○ Configures typical environment variables for a build (CC,
CFLAGS, LIBS,...)

○ Uses compiler wrappers to simplify building with EESSI

Building on top of EESSI

41

https://docs.easybuild.io/common-toolchains/#common_toolchains_overview_foss

Where does the loader
find the libraries?

● Clues in
environment variables

● Information in the
binary (RPATH)

● It’s own defaults

42

Building on top of EESSI

Executable
ld.so

(runtime
linker)

Shared
library

A

Shared
library

C

Shared
library

B

● github.com/EESSI/cicd-demo

● Dependencies: HDF5 and MPI

● Builds with CMake

● Tests via ctest

Cheat sheet: https://hackmd.io/myPkGyj-Rz6pQNMOZWi1IA?view

Big long demo:
An example software package

43

https://github.com/EESSI/cicd-demo
https://hackmd.io/myPkGyj-Rz6pQNMOZWi1IA?view

● Consider case of “release candidates” and production releases

● Developers commit code → triggers CI

● If tests pass, code can be included in a Release Candidate (RC)

● RC is deployed to a staging environment

● Manual/automated approval takes place

● RC is promoted to production manually or with a controlled
deployment

Continuous Delivery (CD)

44

● Production quality software deployed to software.eessi.io

● In preparation is dev.eessi.io, mostly for release candidates

○ More control for developers

○ Access/deployment to specific architectures

● EESSI is working on getting EuroHPC site support for EESSI test
suite, could be leveraged for dev.eessi.io to remove need for
direct access to resources for development

What can EESSI do for CD?

45

1. Easy:
Repeat what was covered
in the demo for yourself

2. Medium:
Go through the same workflow
for a different application

3. Advanced:
Try your own application

Hands-on: Choose your own adventure!

46

● Good exercise for everyone to get the concepts straight

○ Fork github.com/EESSI/cicd-demo

○ Build locally with EESSI first

○ Transfer build to GitHub (or GitLab)

○ Port to EasyBuild (this is an investment for EESSI CD)

○ Transfer port to GitHub (or GitLab)

● Cheat sheet: https://hackmd.io/myPkGyj-Rz6pQNMOZWi1IA?view

47

Easy level:
Repeat demo for yourself

https://github.com/EESSI/cicd-demo
https://hackmd.io/myPkGyj-Rz6pQNMOZWi1IA?view

● Select something without too many complications…
○ https://github.com/samtools/bcftools

● Git tag 1.19 has an easyconfig (BCFtools-1.19-GCC-13.2.0.eb)

○ Toolchain is supported by EESSI/2023.06

○ All dependencies exist

○ Find the commit that matches the tag and start from there

● Not trivial, remember to read the build documentation!

Medium level:
Same workflow, different application

48

https://github.com/samtools/bcftools
https://github.com/easybuilders/easybuild-easyconfigs/blob/develop/easybuild/easyconfigs/b/BCFtools/BCFtools-1.19-GCC-13.2.0.eb

● Select toolchain
○ Restricted to what your EESSI version supports

● Check dependencies can be satisfied
○ Restricted to version(s) available for selected toolchain

● Try a local build with dependencies using EESSI

● Add CI

● Port to EasyBuild
○ Local first, then in CI

Advanced level:
Try your own application!

49

Website: https://eessi.io

Join our Slack channel (see join link on website)

Documentation: https://eessi.io/docs

Blog: https://eessi.io/docs/blog

GitHub: https://github.com/eessi

Paper (open access): https://doi.org/10.1002/spe.3075

EESSI YouTube channel

Bi-monthly online meetings
(first Thursday of every other month, 14:00 CEST)

EESSI Happy Hour
(every Monday, 14:00 CEST)

https://www.eessi.io
https://eessi.io/docs
https://eessi.io/docs/blog
https://github.com/eessi
https://doi.org/10.1002/spe.3075
https://www.youtube.com/channel/UCKLS5X7_oMWhUrAZuzSwBxQ
https://github.com/EESSI/meetings/wiki
https://www.eessi.io/docs/training-events/2025/happy-hours-sessions/

51

Web page: multixscale.eu

Facebook: MultiXscale

Twitter: @MultiXscale

LinkedIn: MultiXscale

BlueSky: MultiXscale

Funded by the European Union. This work has received funding from the European High Performance Computing Joint Undertaking (JU) and countries participating in
the project under grant agreement No 101093169.

https://www.multixscale.eu/
https://www.facebook.com/profile.php?id=100090773041074
https://twitter.com/multixscale
https://www.linkedin.com/company/91063314/
https://web-cdn.bsky.app/profile/multixscale.bsky.social

