
Terje Kvernes | 2022-09-15

EESSI : BEHIND THE SCENES

INFRASTRUCTURE

BERGEN (NO)
NESSI + public stratum 1

DUBLIN (IE)
Stratum 1 + mgmt (aws-eu-west1)

GRONINGEN (NL)
Stratum 0 + Stratum 1

VIRGINIA (US)
Stratum 1 (azure-us-east1)

FRANKFURT (DE)
Testing (aws-eu-central1)

ANYWHERE,
ANYTIME

Where are we today?

Multiple providers
Multiple locations

And more to come…

• The chosen tool is Terraform.

• Domain specific language, under (over)active
development, rich ecosystem.

• Used to deploy nodes into AWS (and Azure).

• Modularised and reusable.

• Deployment under “four eyes” using Atlantis.

• Conceptually provider agnostic. Conceptually.

PROVISIONING
OVERVIEW

https://www.terraform.io
https://registry.terraform.io

• The chosen tool is Ansible.

• YAML-based, human “readable”, under (over)active
development, rich ecosystem.

• Due to repositories being layer-based (a repo for
software layer, another for the combat layer, etc), the
ansible scripts themselves are distributed across
many repositories…

• No central playbook deployment or structure.

• (In what repo do I find, or would I expect to find, the
ansible scripts to set up a client?)

CONFIGURATION
OVERVIEW

https://www.ansible.com

Ansible, inventories and roles.

file: inventory
[clients]
client01
client02
hpc-node[01-50]

[proxies]
eessi-proxy01
eessi-proxy02

[stratum1]
stratum1

CONFIGURATION
INVENTORY AND ROLES

PROVISION

APPROVE
GIT+ATLANTIS

PLANNING

CREATING INFRASTRUCTURE

DEFINE NEEDS

TERRAFORM

Approving terraform code to
have it applied is done by
approving a PR in the
infrastructure repo. Atlantis
then executes the changes.

Produce terraform code, test directly against the
test environment, push PR to a branch in the
infrastructure repo on GitHub to have Atlantis test
the code. Repeat until Atlantis stops complaining.

What infrastructure is needed? Virtual machines?
Storage buckets? What access rules are required?
Cost/benefit analysis, and so on.

?

CONFIGURE
ANSIBLE

Run the playbooks to deploy
the configuration. Currently
performed manually. A long
term goal is to have a master
deployment node.

VALIDATE
MONITORING

Validate the changes by
adding the new services to
the monitoring stack.

INVENTORY
GIT

Add to or create a new
infrastructure inventory. As of
now this is a manual task.

(Iko
ne

r fra http
s://w

w
w

.flatico
n.co

m
/au

tho
rs/sm

ashico
ns)

WHAT’S IN
AN EESSI?

A familiar high-level
overview

https://www.flaticon.com/authors/smashicons

Stratum 0:
- Central server
- Unique
- Hosts the CVMFS volumes
- Mostly automated day-to-day
- Extremely limited access
- May be provisioned via

terraform
- Partial configuration

management via Ansible

EESSI : BEHIND THE SCENES
STRATUM 0

(Ico
ns fro

m
 http

s://w
w

w
.flatico

n.co
m

/au
tho

rs/sm
ashico

ns)

https://www.flaticon.com/authors/smashicons

- Replicates stratum 0
- Complete copy of volumes
- Serves data read-only
- A number of these worldwide
- Geographically distributed
- Runs a standard webserver
- Reduces load on stratum 0
- Offers redundancy
- Provisioned via Terraform
- Configured via Ansible

(Ico
ns fro

m
 http

s://w
w

w
.flatico

n.co
m

/au
tho

rs/sm
ashico

ns)

EESSI : BEHIND THE SCENES
STRATUM 1

https://www.flaticon.com/authors/smashicons

- Reverse proxy for stratum 1
- I/O cache for clients
- Improved user experience
- Load balancing is an option
- Primary contact point for clients
- Lots and lots everywhere
- Provisioned via Terraform
- Configured via Ansible

EESSI : BEHIND THE SCENES
PROXY

(Ico
ns fro

m
 http

s://w
w

w
.flatico

n.co
m

/au
tho

rs/sm
ashico

ns)

https://www.flaticon.com/authors/smashicons

- Fetches software from a squid
proxy or a stratum 1

- Laptops, workstations, HPC-
clusters, cloud machines, etc

- Private, personal, or managed
devices

- A local filesystem cache
provides performance

- All clients experience the same
EESSI software stack
everywhere!

- Can be configured via Ansible

EESSI : BEHIND THE SCENES
CLIENTS

(Ico
ns fro

m
 http

s://w
w

w
.flatico

n.co
m

/au
tho

rs/sm
ashico

ns)

https://www.flaticon.com/authors/smashicons

EESSI : BEHIND THE SCENES
OTHER STUFF

• Monitoring (prometheus + grafana)
• Atlantis (deployment)
• Login node with local persistent storage
• S3 buckets (compatibility layer + software layer tarballs, interaction with GitHub tools, logging, and more)
• Status page
• Ephemeral nodes

• Identity providers
• Access control (hosts, services, networks, users, roles, groups…)
• …

• Provisioned and access controlled via terraform

• Used for staging tarballs, gentoo snapshot backups,
and logging

• Currently uses AWS as its provider

• Lots of lifecycle management baked into the
terraform modularisation

• The ACL environment is complex, allowing users or
specific nodes or specific tokened nodes access.

OTHER STUFF
S3 STORAGE

• Cluster in the Cloud

• Build/test/deploy EESSI-related “stuff”

• Good for hackathons

• Automatic scale-out (spins up worker nodes on
demand)

• Off the shelf software, customisations

OTHER STUFF
CITC

• URL: http://status.eessi-infra.org
GitHub: https://github.com/EESSI/status-page

• Uses a scraper to test CVMFS server:
https://github.com/EESSI/cvmfs-server-scraper

• Reports on stratum servers, their repos, and repo
sync status (version equality between nodes)

• Open source and generic for CVMFS servers

• Automated provisioning, manual configuration
(Ansible role very doable)

• Runs as a cron job every two minutes

OTHER STUFF
STATUS PAGE

http://status.eessi-infra.org
https://github.com/EESSI/cvmfs-server-scraper

• Prometheus + Grafana

• Uses a scraper to collect CVMFS server data:
https://github.com/EESSI/cvmfs-server-scraper

• Historic view of the status page, with more details

• Veeeeeeeeeeery manual configuration, but it’s
actually solvable, including dashboards.

• Only monitors production nodes

OTHER STUFF
MONITORING

https://github.com/EESSI/cvmfs-server-scraper

THE FUTURE

PLANS

EESSI : BEHIND THE SCENES
CURRENT PLANS : STRATUM SERVERS

• New physical stratum0
• Use security devices (yubi-key) to approve signing keys rotated regularly
• Admin access to all Stratum servers based on GitHub team membership (except maybe stratum0)
• Locked down default OS image and access control for all stratum servers
• Reconsider image creation (Packer) and instead configure very basic images
• World-wide public Stratum1 service, utilising AWS, Azure, and possibly other providers
• Automated monitoring of public stratum1 via scrapers

EESSI : BEHIND THE SCENES
CURRENT PLANS : OTHER STUFF

• Migration to eessi.io as our primary domain
• Further work to unify access control across services (github tasks/stratum servers/monitoring/atlantis)
• Dedicated management node with node-based access to relevant infrastructure
• Clean up Ansible playbook structure, ensure regular deployment
• Better CD/CI pipelining for playbooks
• Centralize critical meta data (what are the public stratum1s etc) and use this data everywhere
• Try to stabilise the infrastructure code base, possibly a clean slate?

http://eessi.io

THE FUTURE

CHALLENGES

EESSI : BEHIND THE SCENES
CURRENT CHALLENGES : CODE BASE

• There are many ways of making things work
• Terraform and Ansible have best practices
• Following them is a good thing
• You won’t be following them
• But you can try
• Versions change, code needs to change with it
• Nothing rots like infrastructure code

EESSI : BEHIND THE SCENES
CURRENT CHALLENGES : MONITORING

• Monitoring needs further automation based on an authoritative source of public stratum1s
• How do we tag resources for severity?
• When do we alert?
• Why do we alert?
• Who do we alert?

(Also, how do we alert in this day and age? E-mail? Slack? SMS? For what severity? For what security? How
do we inform end users?)

EESSI : BEHIND THE SCENES
CURRENT CHALLENGES : TESTING

• Testing environment needs work
• Stratum1 isn’t trivial to test (size, time, etc)
• A complete mirror of prod is possible but will carry a financial and logistical cost
• It’s never going to be a perfect mirror
• What do we do with login nodes, management resources, log buckets, etc?
• Ideally we monitor the testing environment as if it was prod but report things in different channels
• This is one of the big outstanding bits of the current environment

EESSI : BEHIND THE SCENES
CURRENT CHALLENGES : DESIGN

• We need multi-provider redundancy for EESSI infrastructure
• IaaC is nice, but it isn’t enough
• Most provisions are automated
• Lots of configuration isn’t automated, even if it is scripted
• The solution is to move everything to “GitOps”
• Atlantis (and/or Terraform Cloud? Github actions?) for provisioning
• Github actions, Semaphore or Rundeck for Ansible?
• If we run self-hosted services we need redundancy with load balancers with health checks in front (ELB)

LESSONS

Infrastructure is a living thing.

Infrastructure is never complete.

Automation isn’t.

Monitoring is hard. Reporting is harder.

Testing and production are sometimes
similar, but never the same.
(And if it is, one has other problems.)

